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Abstract 

The quantification and utilization of coupling effects in a prototypical structural 
acoustic system are examined in this paper. In typical systems, the coupling mecha- 
nisms are manifested in two ways. The first leads to the transfer of energy from an 
ambient field to an adjacent structure and is often responsible for exogenous structural 
excitation. The second involves the transfer of energy from the vibrating structure to an 
adjacent field. This is the source of structure-borne noise and is ultimately the mecha- 
nism through which structural actuators are utilized to attenuate noise. The examples 
presented here demonstrate that in fully coupled systems, both mechanisms should be 
incorporated to accurately model system dynamics. The examples also illustrate ad- 
vantages and limitations of compensators which utilize the accurate modeling of the 
structural coupling. 
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1    Introduction 

The control of noise and vibration in structural acoustic systems has been intensely investi- 
gated in applications ranging from aircraft design to transformer construction. The trademark 
of all such applications and the mechanism ultimately utilized for control is the inherent cou- 
pling between the structure and adjacent acoustic fields. This mechanism is manifested in two 
ways. In the first, energy from a vibrant field is transmitted to a structure through pressure 
or force coupling. This is the mechanism responsible for fuselage vibrations due to propeller 
draft or vibrations in the casing surrounding a transformer. Unattenuated vibration due to 
the acoustic or fluid/structure coupling can lead to structural fatigue. It can also lead to the 
second mechanism of coupling in which energy is transmitted from the structure to an acoustic 
or compressible fluid field. This is the source of structure-borne noise and is ultimately the 
mechanism through which structural actuators are used to attenuate noise. 

Accurate modeling of the acoustic, structural and coupling components is a necessary first 
step for predicting the dynamics of structural acoustic systems and the design of model-based 
controllers. Substantial effort has been directed toward structural systems, and adequate linear 
models for various geometries have been developed. Moreover, as illustrated in [9], model- 
based controllers employing piezoceramic actuators have been experimentally implemented. 
The case for large displacements and hence nonlinear structural models is less complete. 

Similarly, linear wave models have been successfully utilized for low sound pressure level 
acoustic applications. Like the structural case, appropriate nonlinear models for large sound 
pressure levels are still under investigation. An important issue when modeling the acoustic 
field concerns the relatively low wave speeds at general atmospheric conditions. This leads 
to delays between the input of a signal to a structure-mounted actuator and measurement of 
the corresponding response at an acoustic sensor. If left unmodeled or uncompensated, this 
delay can destabilize a controller. This motivates the use of a dynamic wave model which 
incorporates the physical transmission time. 

The analysis of coupling mechanisms is less complete than that of the other components. 
In the structural acoustic systems described in [5, 6, 10] and references therein, pressure 
coupling provided the mechanism for energy transfer from the field to the structure while 
velocity coupling yielded the converse effect. Modal coupling, radiation efficiency and radiation 
impedance were employed in [12, 13, 18] where the problem of attenuating structure-borne 
noise was considered. These coupling techniques are concerned with describing the transfer 
of energy from the structure to the field to address the objective of reducing the efficiency 
of structural radiation. The coupling between a nonlinear acoustic/fluid field and a structure 
through pressure balancing was employed in [15, 17] while pressure balancing was again used 
in [16] for modeling the converse effect of acoustic radiation from a vibrating panel. In these 
latter investigations, partial differential equations (PDE) derived from physical principles such 
as force and momentum balancing were used to model the fluid/acoustic/structural dynamics; 
however, these coupled models have not yet been utilized in acoustic control laws. 

In this work, we quantify and utilize the two coupling effects for compensator design in a 
prototypical 3-D structural acoustic system. This significantly extends the results of [5,10] due 
to the higher dimensional complexity and analysis pertaining to compensator improvements 
through utilization of the coupling. It differs from [12, 13, 18] in that coupled PDE are used to 
model the system and provide a basis for the control laws. Modeling the system in this manner 



helps to provide insight for simulations and the development of model-based controllers. 
The advantage of accurate quantification of the coupling mechanisms for the purpose of 

modeling system dynamics is obvious. The potential advantages from the perspective of 
control design can be indicated through a brief overview of various aspects concerning a 
feedback controller utilizing structural actuators. 

In the idealized case of full state feedback control, information regarding the discretized 
structural acoustic model and control operator is used to compute a Riccati solution and 
corresponding gain. This gain is then applied to the state to compute a control signal which 
is fed back to the structural actuators. Control of the structure-borne noise is realized due 
to the natural "feedback loop" which results from the structural acoustic coupling. In this 
case, the model provides the system information necessary for attaining an accurate Riccati 
solution and hence gain. Note that this case is idealized in the sense that it requires knowledge 
of the full structural (displacement, velocity) and acoustic (potential, pressure) states which 
is not possible with current instrumentation. 

A more realistic scenario when implementing the controller is one in which a limited number 
of structural and/or acoustic measurements are available. In this case, the model is first used 
to provide system information for an observer Riccati equation necessary for estimating or 
reconstructing the state. The data for these calculations consists in part of the structural 
and/or acoustic measurements. The feedback gain is then applied to the state estimate to 
obtain the control signal. The model plays a dual role in this case since it provides system 
information used in calculating both the state estimate and the feedback gain. 

The second source of system information is the data collected from structural and/or acous- 
tic sensors. In applications involving an enclosed or interior field (e.g., an aircraft cabin), it 
may be possible to use both structural (e.g., accelerometers or piezoceramic patches) and 
acoustic (e.g., microphones) sensors. To reduce weight and hardware requirements, however, 
it is often advantageous to limit the number of sensors. This places the impetus for accurate 
system predictions on the model. In other applications such as reduction of exterior noise 
generated by a transformer or an underwater vehicle, it is difficult, and in many cases impos- 
sible, to employ acoustic sensors. In such cases, the acoustic state and feedback gain must 
be calculated solely using the coupled model with structural data as input. For both interior 
and exterior noise control applications, the success of the controller is contingent upon the 
accuracy of the acoustic, coupling and structural components of the model. 

We consider here various aspects concerning the utilization .of coupling in a 3-D structural 
acoustic system. In Section 2, we present the model and outline the general feedback control 
methodology for the system. Numerical simulations demonstrating the effects of the two 
coupling mechanisms are presented in Section 3. It is demonstrated that for systems subjected 
to the two effects, both coupling mechanisms must be incorporated in the model to attain 
the correct system dynamics and frequencies. Control simulations for a system having the 
geometry and dimensions of an experimental device used in the Acoustics Division, NASA 
Langley Research Center, are presented in Section 4. These results demonstrate that even with 
a limited number of structural and acoustic sensors, significant attenuation is attained with the 
model-based controllers. The dimensions of the acoustic cavity relative to the vibrating surface 
are significantly increased in Section 5. This illustrates certain controllability issues which 
must be addressed when employing structure-mounted actuators to control large acoustic 
fields.    Section 6 contains a summary of numerical results demonstrating the design of a 



purely structural controller. These results show that such a controller provides adequate 
attenuation for exogenous frequencies near isolated structural frequencies, but has minimal 
effect when acoustic-like modes are excited. Taken in concert, these examples demonstrate 
advantages and limitations of controllers which utilize accurate modeling of the structural 
acoustic system. 

From these results, the main contributions of this paper can be summarized as follows. 
With regard to modeling, the numerical simulations demonstrate the manner through which 
natural frequencies for the fully coupled system are modified from those of the isolated struc- 
tural and acoustic components. The coupling between components also leads to corresponding 
modal changes. From a control perspective, the numerical examples demonstrate that for this 
geometry, little control authority is lost by employing a realizable output feedback compen- 
sator as compared with an impractical full state LQR theory. It is further demonstrated 
that for this system, very adequate attenuation can be obtained via a compensator which 
incorporates the fully coupled model but utilizes only structural sensors. While the degree 
of attenuation achieved in this manner is application dependent, these results illustrate the 
potential for reduced hardware through accurate modeling. Finally, the results illustrate that 
the reduction of structural vibrations via isolated structural models is not adequate for con- 
trolling broadband structure-borne noise. The acoustic field and coupling mechanisms must 
also be incorporated in the model to attain effective noise reduction. 

2    Model and Control Formulation 

The first step in the development of a model-based control methodology is the derivation of 
a system model. This is illustrated here for a structural acoustic test apparatus used in the 
Acoustics Division, NASA Langley Research Center. This apparatus consists of a concrete 
cylinder with a thin aluminum plate mounted at one end as depicted in Figure 1. The opposite 
end is closed so that interior acoustic waves are reflected back toward the plate. A loudspeaker 
adjacent to the plate provides an exterior acoustic source while surface-mounted piezoceramic 
patches are used as control elements. Note that in this system, both coupling between the 
plate and interior field and pressure interactions between the interior/exterior acoustic field 
and plate are present. 

Figure 1. Cylindrical structural acoustic system with a fixed plate at one end. 

3 



To specify the geometry, the cylinder is assumed to have length £ and radius R with a 
thin plate of thickness h at one end. The interior acoustic domain is denoted by Q while V0 

indicates the plate domain. The remaining boundary of the acoustic cavity is denoted by T 
and has an outward normal n. 

The test apparatus just described is a hybrid system in several senses. The generation of 
interior noise is due to structural acoustic coupling while control via the piezoceramic patches 
is due to electromechanical interactions. Finally, the system contains several electromagnetic 
components due to the hardware required for sensing and control. We describe here PDE 
modeling the structural, acoustic and structural acoustic coupling components as well as the 
electromechanical input from the patches. When spatially discretized, this provides a vector 
ODE which approximates the dynamics of the acoustic and mechanical components of the 
experimental system. Various uncertainties are then incorporated in the model to account for 
model and sensing uncertainties as well as the unmodeled electromagnetic components. The 
section concludes with an H°° /MinMax formulation appropriate for the ODE system with 
uncertainties. 

2.1    System Model 

Interior Acoustic Field 

For the purpose of modeling the interior acoustic field dynamics, it is assumed that sound 
pressure levels are below 120 dB and that acoustic field damping is negligible. These are rea- 
sonable and typical assumptions when considering the sound pressure levels and dimensions of 
the experimental device or in applications such as control of fuselage noise. Furthermore, it is 
assumed that the acoustic cylinder and endcap are not influenced by the interior acoustic field; 
that is, no concrete pipe or endcap frequencies are found in the system response. This latter 
assumption has been verified through accelerometer tests with the experimental apparatus. 

With 4> and c denoting an acoustic velocity potential and wave speed, respectively, an 
appropriate model for the interior acoustic dynamics is 

d2<f> 
c2A(f> ,     (r,0,z)€ß ,<>0 , 

dt2 - >     v >   >   / -      > (2^ 

V(f>-h = Q ,    (r,0,z)er,OO 

with the Laplacian in cylindrical coordinates given by 

dr2      r dr     r2 dO2      dz2 ' 

The linear wave equation provides an adequate approximation of the acoustic dynamics for the 
sound pressure levels under consideration. This includes the dynamic effects which account 
for the time required to propagate information from the plate to sensors in the cavity. The 
hardwall boundary conditions are justified by the inert nature of the concrete cylinder and 
endcap with the form of the boundary conditions resulting from the inherent relationship 
between the acoustic potential and velocity (i.e., v = — V(/>).    Finally, we note that the 



potential is related to the acoustic pressure through the relationship p = p/ff where pj 
denotes the equilibrium density of the interior acoustic field. 

Plate Dynamics 

In developing dynamic equations for the plate, it is assumed that the displacements are 
within the range of linear theory and that rotational effects are negligible. Both of these 
assumptions have been validated through parameter estimation for the plate in the experi- 
mental setup (see [8]). Furthermore, it is assumed that s piezoceramic patch pairs are bonded 
to the plate and driven out-of-phase so as to produce pure bending moments. Finally, it 
is assumed that boundary clamps are sufficiently tight to permit the use of clamped-edge 
boundary conditions.   This latter assumption is again justified by the experimental results 

in [8]. 
As detailed in [7, 22], an appropriate model for the circular plate derived under the as- 

sumption of negligible air damping is 

d2w     d2Mr _ 2 dMr_    ldMe_ _ 2d2Mre _ 2 dMrS _ 1 d2Me =   .      &) 
ph~dV~~d?~~ r   Or   + r   dr        r  drdO       r2    30 r2   dQ2        9{ ^   j' 

w{t,R,8) = ^(t,R,0) = 0 

where w is the transverse plate displacement, p is the structural density and g is a general 
surface force input term. The general moments are given by 

Mr     =     Mr- (Mr)pe 

Me   =   Me-{Me)pe 

Mre   =   Mr8 

where Mr,Me and Mre are internal plate moments and (Mr)pe and {Me)pe are the external 
moments generated by the patches. 

The internal moments for the circular plate with s pairs of surface-mounted piezoceramic 
patches have the form 

Mr = DKr + DKg + CDKr + CDK$ 

M6 = DKg + DKr + cDKe + cDKr (2.2) 

D       D       cD .     cD . 
Mre = Mer = -r--r + Yr-Yr 

Where , _    d2w r _    ldw _ \_d\u_ _ _2_a^_    ^dw 
Rr = —ß~2     '     Ke - ~r!k ~ ^ Ö62     '     T ~     r drdO + r2 86  ' 

The global fiexural rigidity parameters D, D and Kelvin-Voigt damping parameters cD and 



CD are given by 

D(r,0) 
Eph

3 

12(1 - vl) + 3 tx 

V[r^}     12(1 -u2) + 3 £i 

aD(r,#) 
cDph

3up 

12(1 - ^) + 3 h 

Epea3pe     Euazu 

l-<      1-4 

Epea3peUpe        EuO-Zblvbl 

1-1/2 pe 1-fi 

cpPeazpe ,  cnb(azu + 
l-^2e     '     l-4j 

CDpe^peVpe       Co^zhi^U 

1 -I/2 x pe 1-M 
X*M) 

(2-3) 

where the Young's modulus, density coefficient, Poisson ratio and Kelvin-Voigt damping coef- 
ficient for the plate are denoted by Ep,pp: vp and CDP, respectively, while similar parameters for 
the patches and bonding layer are denoted by Epe,ppe,i/pe,CDpe and Ew,PM,Vbi,CDbi, respec- 
tively. The constants a3U = {h/2 + Twf - (h/2)3, a3pe = (h/2 + Tu + T)3 - (A/2 + Tuf arise 
from integration through the bonding layer Tu and patch thickness T while Xi(r->Q) denotes 
the characteristic function which has a value of 1 in the region covered by the ith patch and 
is 0 elsewhere. Finally, the mass density also exhibits a piecewise constant nature due to the 
presence of the patches and is given by 

2   s 

p(r, 6) = pp + - Y\puTu + ppeT]xi{r, 0) . 

We point out that if the plate, patches and bonding layers have the same Poisson ratios 
[up = vpe = vu = v), then the internal moment expressions reduce to the familiar relations 
for a thin plate with variable thickness due to the bonding layers and patches. For example, 
Mr in this case is given by 

Mr = -D\ 
'd2 w    v dw v d2ws d3 w ud2 w 
dr2     r dr     r2 dd2 - cD\ 

d3 w 
dr2dt    f drdt    r2 d02dt 

with D and C£> defined in (2.3). 
The external moments generated by the patches in response to an applied voltage (out-of- 

phase for the patch pair) are given by 

(Mr)pe = (Me)pe = -YJK,fui{t)xi{r,9) (2.4) 
2 = 1 

where U{(t) is the voltage into the ith patch pair and JCf is a parameter which depends on the 
geometry, piezoceramic and plate material properties, and piezoelectric strain constant (see 
[11] for details). Note that (2.4) accounts for the electromechanical coupling through which 
an applied voltage is converted to mechanical input. 



Structural Acoustic Coupling 

Two structural acoustic coupling mechanisms are inherent in the system. The first accounts 
for the influence of the internal and external acoustic fields on the structure. It yields the 
input term 

g(t, r, 9) = /(*, r, 9) - Pr£(t, r, 6, w(t, r, 9)) 

where / is a surface force modeling the exogenous loudspeaker input and pj& - p is the 
backpressure force due to the interior field. The second mechanism is responsible for the 
transfer of energy from the plate to the interior field. It is modeled by the continuity of 
velocity condition 

^(«,r,9,«,(*,r,*)) = -^(t,r,9)        ,     (r,9) € T0 , * > 0 

(recall that due to the definition of the potential 0, =§^ is the acoustic velocity in the z- 
direction). Because both conditions occur at the moving plate surface, they are inherently 
nonlinear. Under the assumptions of small displacements, however, it is reasonable to linearize 
about the rest state to obtain 

g(t,r,9) = f(t,r19)-pf^(t,r,9,0) 

|(«,r,M) = -^,r,0 

(see [6] for numerical investigations validating this assumption). 

Strong Form of System Model 

Consolidation of components yields the strong form of the coupled acoustic/structural/ 
electromechanical model 

|^ = c2A</>        ,    (r,M)€n,t>0, 
dt2 

V0-n = O        ,     (r,0,z)€r ,i>0, 

^rie,0) = -^(t1r,9)        ,     (r,0)€ro,*>O, 

d2w     d2Mr     2 dMr     18Me     2 d
2Mr8     2 dMr6      1 d2Me 

ph-zir      ä~r    „ a„  + „ a*-      r. fir-fw      -r-i   aft       T-2 Fift2 (2-5) dt2 dr2 r  dr       r dr r drd9 r2 d9        r2 d92 

= 
-d2(Mr)pe 

dr2 

2d(Mr)p 

r      dr 

e,o) + f(t, 

e         1 - + - 
r 

r,6) 

d(Me)pe 

dr 
1   d 
r2 

\Me)pe 

d92 

w{t,R,e) = -^(t,R,0) = 0 



with initial conditions 

0(0, r, 9, z) = Mr, *, z)    ,    to(0, r, 9) = w0(r, 9) , 

^(0,r,Ö,2) = ^(r,ö,z)    ,     ^(O,r,0) = Wl(r,0). 

It is noted that in this form, moments are differentiated in the plate component. Because the 
moments are discontinuous due to piecewise constant material parameters and control inputs, 
this leads to regularity problems associated with the differentiation of a Dirac delta 'function'. 
To avoid ensuing difficulties with the differentiation and to reduce smoothness requirements 
on approximating bases, it is advantageous to reformulate the problem in a corresponding 
weak or variational form. 

Weak Formulation of System Model 

To provide classes of functions which are considered when defining a variational form of 
the problem, we consider the state space X = L2(ti) x L2(To) and space of test functions 

V = H'itt) x #0
2(r0) where H2(T0) = {V> € #2(r0) : ^ = §* = 0 at r = Kl- Here l\tt) and 

H1^) are the quotient spaces of L2(0) and i71(f2) over the constant functions (the use of 
these spaces is due to the fact that the potentials are determined only up to a constant). 

As detailed in [7, 22], an appropriate variational form of the coupled system model is 

PI 9V, Bw^+Lp'v*-V^ 
f    , d w   ,       f   *, d2r) i       f  1 „,r dr] ,       f   1 „,  d2n , 

+ki"wl—§tir 

■To t-_j •'To 

for all test functions (£, rj) € V. In this formulation, duj = r dr d9 dz and d^ = r dr d9 while 
the overbars in (2.6) denote complex conjugates. An abstract formulation for this model, 
which leads to well-posedness results, is given in [4, 7, 22]. 

2.2    Spatial Approximation 

To obtain a time-dependent ODE system suitable for simulations, parameter estimation and 
control, a semidiscretization of the plate and acoustic states was performed.  As detailed in 



[22], appropriate Galerkin approximations of the displacement and potential are given by 

JV 

^^,0) = £<(')<M) 
3=1 

M 

3 = 1 

The basis {B^(r,9)} is constructed from modified cubic splines in r combined with periodic 
Fourier components in 6 while modified Legendre polynomials in r and z were combined with 
Fourier components in 9 to obtain {Bf*{r,9,z)}. In all examples which follow, a total of 

M = 99 and M = 12 basis functions were employed. 
Projection of the system (2.6) onto the finite dimensional subspace spanned by the bases 

yields a V = 2(M + M) dimensional ODE system 

• Mvxv{t) = Avxv{t) + Bvu(t) + Fv{t) 

Mvxr(0) = x^. 
(2.7) 

The vector xv{t) has the form xv(t) = [<p(t), tf(<), ¥>(<)> t?(«)]T where <p(t) = [<f^(t), • • •, <fä(t)] 
and t?(i) = [w?(t), ■ ■ ■, u^f(i)] contain the generalized Fourier coefficients for the approximate 
acoustic potential and plate displacement, respectively. The vector u(t) = [MI(<)> • • ■ ,us(t)]

T 

contains the s patch input variables. The system matrices and vectors have the form 

Mv = 

KA 

Kt 

MA 

Mr 

Av = 

KA 

KP 

-KA -Ad 

-KP -Ac2 -CP . 

(2.8) 

and 
Bf o. o, o. B]T 

Fp(t) = [0,0,0,ff(<)]3 

The vector x% contains the projections of the initial values into the approximating finite 
dimensional subspaces while B and g(t) contain the input terms. The component matrices 
Mp, Kp and CP are the mass, stiffness and damping matrices for the isolated plate while MA 

and KA denote the mass and stiffness matrices which arise when approximating the uncoupled 
wave equation with Neumann boundary conditions on a cylindrical domain (see [22] for details 
regarding these formulations). Contributions due to the coupling are contained in the matrices 

[Acl}ie = -( PjBfWdl    ,    [M,- = L PfB^Wdl 

where the index ranges are i — 1, • • •, M and £ = 1,; • •, M. 
Multiplication by the inverted system mass matrix then yields the equivalent Cauchy 

svstem 
^(f) = AV(i) + ßV*) + f7(0 (29) 

*'(0) = xl . 



Observed System 

In control applications, one typically has available only a limited number of state obser- 
vations. Hence for implementation purpose, a finite dimensional observation operator Cv 

yielding approximate state observations 

y"(t) = Cx"(t) (2.10) 

must be developed. It is assumed here that a total of m measurements are made at the points 

Potential: ui, , ^ = 1, • • •, Nj, 

Displacement: 7^ ,       iw = l,---,Nw 

Pressure: uip , ip = 1, • • •, Np 

Velocity: ~jiv , iv = l,---,Nv 

An appropriate observation operator is then 

m = N4> + Nw + Np + Nv 

C7 

C4    0     0     0 

0   cw   0    0 

0 

0 

0   cp   0 
00a 

c* € m.N*xM 

Cw € RNw*" 

Cv € IR^xAr 

where 

[Cw]iw,k = Bjffa) = I 8(j - llw)BUl 
-To 

[Cp\ip,k = ^K) = fapA» - <*i,)B?du, 

(2.11) 

(2.12) 

Note that the i^  observation of the approximate potential is given by 

with analogous expressions for the observed displacement, pressure and velocity. 

Unmodeled Dynamics 

The system (2.9) provides an approximation of the structural acoustic and electromechan- 
ical components of the experimental system described at the beginning of this section. It 
ignores, however, the electrical effects of the necessary control circuitry (e.g., amplifiers, fil- 
ters, A/D and D/A converters) and unmodeled physical contributions which are unavoidable 

10 



in experimental systems. For example, the damping provided by the patches when the circuit 
is completed is not explicitly included in the model. 

To incorporate such unmodeled effects, uncertainties in the form of additive random state 
perturbations are included in the model. With ai(i), • • • ,a4(i) taken as random variables on 
[—.1, .1], this can be accomplished through the inclusion of a term 

z>V(0 

"    0 | 0 

0    | 0 

-KA | -Acl 

-Kp | -Ac2 -CP\ 

0!l<p(t) 

oi2m 
(2.13) 

in the finite dimensional model (2.9). Note that this yields the coupled dynamic ODE system 

MA(p{t) + KA[1 + t*i(t)Mt) + Acl[l + aA(t)]0(t) = 0 

MPd(t) + CP[1 + a4{t)]0(t) + KP[1 + a2(t)]tf(i) + Ac2[l + a3{t)]<p{t) = Bu{t) + g(t) 
(2.14) 

which incorporates damping and stiffness uncertainties. While other choices for Dv exist 
[2, 10], this construction incorporates uncertainties at the constitutive level. It is further 
motivated by experimental results in [8] which demonstrate that while damping effects due 
to completed patch circuits are unmodeled, the effect is phenomenologically similar to the 
Kelvin-Voigt damping. This is exactly the manner through which damping uncertainties are 
incorporated in (2.13). 

It is further assumed that errors proportional to the output are found in the observed data. 
To include these contributions, the observations are taken of the form 

/(f) = cV(f) + £M<) 

where [Evrj(t)]j = aj(t)[Cpxr(t)]j , j = 1, • • •, m. Here ctj(t) is a random variable on [-.1, .1]. 
To summarize, the observed system with state and measurement uncertainties is given by 

xv{t) = Avxv(t) + Bvu(t) + Dvrj(t) + Fv(t) 

yv(t) = Cfxv{t) + E*r,(t). 
(2.15) 

2.3    Control Formulation 

We briefly summarize here the methodology for the #°°/MinMax periodic control of the 
finite dimensional structural acoustic system (see [2] for details). It is assumed that the only 
exogenous moments and forces being applied to the plate are periodic forces having a period 
r; hence F(0) = F(T) in (2.15). Note that in accordance with usual finite dimensional control 
convention, we will drop all superscripts throughout the remainder of this work. It can be 
assumed throughout that the system dimension is V = 2(M + J\f). 

11 



Full State Feedback 

For the case with full state information, the system to be controlled is 

x{t) = Ax{t) + Bu(t) + Dri(t) + F(t) 

s(0) = s(r). (2-16) 

The performance output z(t) G Z is given by 

z(t) = Hx(t) + Gu(t), 

where Z is a performance output space (see [19, 23]). For the finite dimensional approximate 
system, the problem of determining a controlling voltage can then be posed as the problem of 
finding u € £2(0,r; U) which minimizes the steady-state disturbance-augmented functional 

J(U) = [ {<W)^)V + (Ru{t),u{t))w - l2Ht)\w}dt 

where x(t) solves (2.16), R = GTG is an s x s diagonal matrix containing weights which 
penalize overly large voltages to the patches [1], and W denotes the space in which disturbances 
evolve. An appropriate choice for the nonnegative matrix Q = HTH, which stems from energy 
considerations, is a diagonal matrix multiple of the mass matrix in (2.7) (see [5]). Here 7 G R 
is a fixed positive constant which is a design parameter to be chosen as small as possible. In 
this case, the H°° norm of the closed loop disturbance to performance output transfer function 
from rj(-) to z(-) is bounded above by 7. 

Under suitable conditions (see [14]), optimal control theory can then be used to show that 
the optimal controlling voltage is given by 

u{t) = -Kx(t) + RT1BTr(t) (2.17) 

where K = R~1BTU and IT is the unique nonnegative self adjoint solution to the algebraic 
Riccati equation 

,4Tn + n.4 - n (BR-1BT - \DDT) n + Q = o. 

The tracking component r(t) solves the adjoint equation 

T 

r(t) + UF(t) m = 
r(0) = r(r 

A-   BR-1BT-^DDT)u 
I2' (2.18) 

Output Feedback 

The feedback law (2.17) is idealized in the sense that it requires knowledge of the full state 
(displacement, velocity, potential and pressure) which, using current instrumentation, is not 
possible.   Instead, one typically has available measurements at a discrete number of points 
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(see (2.10)). From these observations y, the state is reconstructed or estimated by solving the 
MinMax state estimator equation 

m A-FCC- BK + ^DDTIL 
T 

+F{t)+ \BR-1BT - --DDT )r(t) 

x{t) + Fcy(t) 

x(0) = X{T) 

(see [1, 2, 10, 14]). The observer gain Fc has a form similar to that of the feedback gain K 
and is given by Fc = (I — \TiU)'ll^CTM~l. Here Me is a design matrix which is related to 
the effect of noise in the data and S solves a second algebraic Riccati equation 

AS + SAT - S (cTM;'C - \Q) S + DDT = 0. (2.20) 

In addition to the self adjointness and non-negativity of the matrices II and E, a supplementary 
condition is typically imposed, namely the boundedness of the spectral radius of EII by 72 

(see [1, 19, 23]). This latter condition can be expressed as 

Psp(m) < 7
2. 

Once a state estimate x(t) is obtained, the controlling voltage is given by 

u(t) = -Kx(t) + R-1BTr(t) (2.21) 

where r(t) is again the unique r-periodic solution of the adjoint or tracking equation (2.18). 

3    Open Loop Simulations 

To illustrate the effects of coupling and the manner through which the plate and acoustic 
components contribute to the coupled system dynamics, we summarize here characteristic 
open loop dynamics for the system. The dimensions for the system were chosen to be com- 
patible with those of the experimental cylinder at NASA Langley Research Center which has 
length t - 1.067m (42") and radius R - 0.229 m (9")- The end-mounted plate has thickness 
h = 0.00127 m (0.05") with a pair of centered piezoceramic patches with respective thickness 
and radius hpe = 0.00018 m (0.007") and Rpe = 0.019 m (0.75"). These values were then used 
for the simulations reported here. The physical parameters for the simulations are summa- 
rized in Table 1. As reported in [8], these values are also consistent with physical parameters 
for the experimental setup. 

Throughout this section, control inputs are excluded (u(t) = 0) and impact-like spatial and 
acoustic inputs are used to generate transient system responses. A comparison of natural fre- 
quencies is then used to quantify the contributions of the structural and acoustic components 
and the two coupling mechanisms modeled by force (pressure) and velocity balancing. 

To provide a baseline for comparison, natural frequencies for the isolated plate and acoustic 
field are summarized in Table 2.   As detailed in [7, 22], where the full set of frequencies 
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are provided, the plate frequencies were calculated under the assumption of no damping 
(CD = 0) while the acoustic frequencies were calculated under the assumption of fully Neumann 
boundary conditions. 

As discussed in Section 2, force balancing is used to incorporate the acoustic effects on 
the structure; this leads to a pressure input term in the modeling acoustic equation. Velocity 
balancing incorporates the converse coupling mechanism through which energy is transmitted 
from the structure to the acoustic field. In terms of the component matrices in (2.7), these 
coupling components enter as input terms in the vector equations 

MACp{t) + KA<p{t) = -Acj(t) + FMg(t) 

Mpd{t) + CP4{t) + Kpd{t) = -Ac2ip{t) + FMf(t) 
(3-1) 

(compare with (2.14)). 

Structure Acoustic Cavity 

Parameter Plate Plate + Pzt Parameter Cavity 

p ■ Thickness (kg/m2) 3.429 3.489 Pi (%/™3) 1.21 

D {N -TO) 13.601 13.901 

C£> (N ■ m • sec) 1.150-4 2.250-4 

V .33 .32 

KB (N/V) .027 

c (m/sec) 343 

Table 1. Physical parameters for the structure and acoustic cavity. 

Plate (fmn) Wave Jmnp) 

(0,0) 62.0 (0,0,1) 160.8 (0,1,0) 915.0 

(0,1) 241.2 (0,0,2) 321.5 (0,1,1) 929.0 
(0,2) 540.5 (0,0,3) 482.3 (0,1,2) 969.9 
(0,3) 959.5 (0,0,4) 

(0,0,5) 
(0,0,6) 

643.0 
803.8 
964.6 

Table 2. Axisymmetric natural frequencies for the isolated and undamped plate and cavity 
(in hertz). The cavity mode (m,n,p), corresponding to frequency fmnp, has m nodal lines in 
6, n nodal circles in r and p nodal lines z (similarly for plate modes). 
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The vectors FMg{t) and Ftff(t) incorporate the exogenous input to the cavity and plate, 
respectively. For an impact at time t = t0 applied at the plate point (ro,0o), 

trie components 
of Fxf(t) are given by 

[F«f(t)]k   =   S{t 

=   6{t 

to) I  5(r-r0,6-80)B?d7 

to)BJf(ro,0o) 

with a similar expression for the acoustic input. Note that one can consider g(t) = 0 if no 
acoustic input is present as is the case in the coupled structural acoustic control problem. In 
all examples here, plate impacts are at (r,0) = (0,0) while cavity impacts are at (r,6,z) = 
(0,0, £/3). 

By considering various coupling combinations (e.g., Acl = 0 eliminates the coupling mech- 
anism through which energy is transmitted from the plate to the cavity) and force inputs 
f{t),g(t), the effects of the two coupling mechanisms were isolated. The six coupling/input 
combinations are depicted in Figure 2 and are summarized below. 

0= 
\ 

1 

0=- 1 
(a) (b) (c) 

Figure 2. Coupling combinations with plate and acoustic impulse forces at the point x; 
(a) Coupling from structure to field; (b) Coupling from field to structure; (c) Full structural 
acoustic coupling. 

Case (i): Coupling from Structure to Field 

To illustrate the case in which coupling from the structure to the acoustic field is incor- 
porated in the model but energy transfer from the field to the structure is neglected, we let 
Ac2 = 0 in (3.1) and (2.8). This case is depicted in Figure 2a. Note that the exogenous force 
FMg(t) and velocity coupling provide input to the cavity while the only input to the plate is 
provided by the exogenous force Ftff(t). 

Consider first the force choices g(t) = 0, f(t) = S(t - t0) which models an impact to the 
plate with no exogenous force to the cavity. Because the plate is unaffected by the acoustic 
field in this case, natural frequencies measured on the plate will be close to those summarized 
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in Table 2 with differences due only to the Kelvin-Voigt damping. The structure acts as an 
input to the cavity with frequencies governed by the harmonics of the plate. Hence both plate 
and wave frequencies will be measured in the cavity. The frequencies obtained via (2.7) at the 
plate point pi = (0,0) and cavity point c2 = (0,0, .35) depicted in Figure 3 are summarized in 
Table 3. Frequencies calculated at the plate point are indicated in the table by p while c denotes 
frequencies measured at c2. It should be noted that to within the sampling resolution, the 
frequencies calculated at both points agree with those for the isolated components which are 
summarized in Table 2. Furthermore, Table 3 illustrates the transmission of plate frequencies 
into the cavity. 

The conclusion for general structural acoustic systems will be similar. The incorporation 
of only the velocity coupling in the model will lead to a system response similar to that of 
the components with structural frequencies propagated into the acoustic field. This type of 
model might be useful if considering far field acoustics generated by a vibrating structure 
(e.g., transformer). As illustrated in Case (iii), however, it may provide inaccurate system 
frequencies in applications in which the acoustic oscillations couple back to the structure. 

The second choice g(t) — 6(t — t0),f(t) = 0 models an impact in the cavity with no 
exogenous force to the plate. The purely cavity frequencies summarized in Table 2 will be 
present at the cavity point c2. No response will be noted on the plate since the coupling 
between the field and plate is neglected in this case. 

C2 Li 

Figure 3.  The structural acoustic system with evaluation points px — (0,0), c\ = (0,0.05), 
c2 = (0,0, .35), c4 = (0,0,1.0) and evaluation line L\. 

Natural Syst< sm Free uencies 
p,c 62.0 c 160.8 c 915.4 
p,c 241.2 c 321.5 c 928.1 
p,c 540.5 c 482.3 c 969.8 
p 959.5 c 

c 
643.7 
806.6 

Table 3.   System frequencies obtained with Ac2 = 0; p:  frequencies observed at the plate 
point pi = (0,0), c: frequencies observed at the cavity point c2 = (0,0, .35). 
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Case (ii): Coupling from Field to Structure 

This case can be quantified by considering Acl = 0 in (2.8). As shown in (3.1) and depicted 
in Figure 2b, the model in this case incorporates the acoustic influence upon the structure 
but neglects structural influence upon the field. The dynamics can be predicted from those 
observed in Case (i) with the opposite mechanism. The acoustic frequencies are propagated 
to the structure when g(t) = S(t - t0),f(t) = 0 with both sets close to the those of the 
isolated components (the only deviation is a slight shift in the structural frequencies due to 
the Kelvin-Voigt damping). This model will be accurate only for systems in which the field 
strongly drives the structure with negligible feedback from the structure to the field. 

Case (iii): Full Coupling between Field and Structure 

The case of primary interest for the system considered here is that in which both coupling 
mechanisms are incorporated in the system model. Hence both the matrix Acl (velocity 
coupling) and matrix Ac2 (pressure coupling) are included in the ODE system (2.8) or (3.1). 

System frequencies for this case are summarized in Table 4. A comparison between these 
results and corresponding frequencies for the uncoupled plate and acoustic field (see Table 2) 
indicates that while the system response reflects the structural and acoustic components, 
the system frequencies are shifted from those of the components due to the coupling. The 
three system frequencies corresponding to the plate component (59.5, 239.5, 538.2 Hz) are 
lower than the corresponding frequencies of the isolated plate. Thus the coupled acoustic 
field effectively mass loads the structure. The remaining system frequencies correspond to the 
acoustic component. They are higher than those for the isolated wave fields which indicates 
that the coupling of the plate to the acoustic field provides a stiffening effect to the field. For 
the geometry investigated here, we observe frequency shifts of approximately 2.5 Hz (« 5%) 
for lower frequencies and 3 to 4 Hz (« 1% to 2%) for higher frequencies. Hence in many 
applications, the uncoupled systems will provide sufficient modal information. 

However, for many systems which are closed in the sense that both acoustic/structure and 
structure/acoustic interactions are present, both mechanisms may need to be incorporated in 
the model to accurately match dynamics. Omission of either mechanism will lead to model 
frequencies which match those of the isolated components but may not match those of the 
actual coupled system. Employment of a model which neglects coupling components in a 
PDE-based controller can lead to decreased control authority. If the neglected coupling is 
significant, the controller will be destabilized by the ensuing frequency inaccuracies. 

Natural Syst< ;m Free uencies 
p,c 59.5 p,c 163.4 c 915.6 
p,c 239.5 p,c 324.1 p,c 929.3 
p,c 538.2 p,c 

p,c 
p,c 

483.1 
645.2 
807.5 

p,c 971.0 

Table 4. System frequencies obtained with full structural acoustic coupling conditions; p: 
frequencies observed at the plate point px = (0,0), c: frequencies observed at the cavity point 

c2 = (0,0,.35). 
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4    Closed Loop Simulations-Short Cylinder 

For compensator design, the spatially discretized model (2.15) with full structural acoustic 
coupling was considered. The performances of the full state #°°/MinMax feedback control, 
output feedback MinMax control and LQG feedback control (Kaiman filter) were then com- 
pared with open loop system responses for a variety of sensor configurations and geometries. 
This provided a means of evaluating and utilizing the coupling in the model-based compen- 
sator. 

To illustrate, two geometries for the structural acoustic system were considered. For the 
first, dimensions consistent with those of the experimental chamber in the Acoustics Divi- 
sion, NASA Langley Research Center were used (see the discussion in Section 3 and Table 1). 
This provided simulation results which can be used to predict experimental dynamics and 
guide experiments involving that setup. The numerical results for this geometry are reported 
in this section. The second geometry involves an acoustic chamber whose length is signifi- 
cantly longer than the diameter of the vibrating plate. This illustrates the manner through 
which the acoustic wave equation describes the effective physical delays due to relatively slow 
wave speeds. It also indicates controllability issues which must be considered when designing 
controllers for such systems. Results for this geometry are summarized in Section 5. 

The exogenous force to the plate was taken to be 

f(t) = 28.8[sin(27rl70*) + sin(27r33(M) + sin(27rl00*) + sin(27r250*)] • (4.1) 

This models a plane acoustic wave with an rms sound pressure level of 126 dB. This excites 
a combination of modes since the first two frequencies (170 Hz, 330 Hz) couple readily with 
cavity-like modes while the latter two frequencies strongly affect plate-like frequencies (see 
Tables 2 and 4). 

Consideration of the control laws outlined in Section 2.3 indicates several design parameters 
which can be used to weight input and output values as well as various states and sensors. 
The specific design of the model uncertainty matrix D and output uncertainty matrix E also 
can be modified according to the application. Furthermore, the parameter 7 which bounds 
the #°° norm of the transfer function from disturbance to performance output can be tuned 
to improve performance. 

Various criteria are considered when choosing these design parameters. These include 
overall attenuation levels, control magnitude (overly large voltages will destroy the patches), 
conditioning of Riccati solutions and spectrum stability of the closed loop system. Many of 
these issues are addressed in [3] and the reader is referred to that reference for a general 
discussion of these design criteria. Reference [4] contains details regarding the specific choices 
for these simulations. 

The design criteria involving the state, observation and control weights, and MinMax 
parameter 7, arise from the formulation of the control law rather than the physics of the 
problem. The placement and number of sensors and actuators, however, is a design criterion 
which is directly related to the physics. As mentioned previously, a pair of circular, centered 
piezoceramic patches are employed as actuators in the experimental system. These actuators 
are glued to the plate and are considered as permanent throughout both experiments and 
simulations. The use of this single pair proved adequate for this geometry and axisymmetric 
force (4.1) but led to controllability problems in the long cylinder discussed in the next section. 

18 



The sensors are often more portable (unless piezoceramic patches or other permanently 
bonded materials are employed) and a variety of configurations were considered. Criteria 
which are considered when determining number and placement are hardware limitations (re- 
stricted number of input channels for data acquisition), physical constraints (sensors outside 
a transformer or submarine are unsuitable), Riccati solution conditioning etc. The hard- 
ware constraints limit the available number of sensors while physical constraints often make 
it advantageous to limit the types and placement of sensors. The ideal case is to eliminate 
the acoustic sensors entirely and use the model with coupling along with structural data to 
reconstruct the acoustic state. 

For the simulations presented here, three sensor configurations were considered as sum- 
marized in Table 5. In all cases, the number of sensors measuring the potential was taken to 
be N,/, = 0 in (2.11) when constructing the observation matrix (2.12). This is due to the fact 
that the potential is not a readily measured state. 

For Compensator I, 5 microphone, 5 velocity, and 5 displacement measurements at the 
observation points 

ulp = (0,0, .0334), 7u=7lv = (i?/3,0) 

W2p = (£,0,£/2), 72w = l2v = (R/3,n) 

LOZP = (R, 7T, £/2) , 73W = 73, = (2Ä/3, TT/2) 

co4p = (Ä, TT/2, t) , 74„ = 74„ = (2Ä/3, 7TT/6) 

u;5p = (R,3TT/2,£) , 75w =75, = (2ä/3,11TT/6) 

were used for state reconstruction (see Figure 4). This implies that Np = Nw = NV = 5 in (2.12). 

^5w_^5v 

Tkw-Tkv 

0 = 0 

<°2r 

co4c «5t 

<Ö3r 

Figure 4. Pressure and plate observation points for the structural acoustic system. 

Compensator II differs from Compensator I in the manner through which the microphone 
observation submatrix Cp is employed. For the calculation of the observer gain through 
solution of the observer Riccati equation (2.20), this submatrix was retained so that the full 
observation matrix C had dimension (Np + Nw + Nv) x (2J\f + M). For the calculation 
of the state output (2.15) and the state estimate x[t) solving (2.19), however, only plate 
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measurements were considered so Np = 0 which results in a null submatrix Cp in (2.12). The 
acoustic sensors utilized in this manner are referred to as virtual microphones. 

This second compensator is motivated by the goal of eliminating the acoustic sensors and 
utilizing the coupled model for state reconstruction using solely structural data. This is what 
is implemented in the state calculations (2.19). The motivation for including the pressure 
submatrix Cp when calculating the observer gain is the maintenance of conditioning for Riccati 
solutions, lower spectral radii and closed loop spectrum bounds. As illustrated in [4], solution 
of the observer Riccati equation (2.20) with solely structural observation components leads to 
unacceptable conditioning and spectral radii when computing observer gains. 

Compensator III utilizes both virtual microphones and virtual displacement sensors so 
that the only physical data used when estimating the state are velocity measurements. This 
is motivated by physical constraints on structural sensors. Displacement measurements us- 
ing proximity sensors are typically difficult to obtain whereas velocity measurements can be 
obtained using laser vibrometers or integration of accelerometer data. Nonzero initial condi- 
tions for the state estimator were employed in all three compensators. As detailed in [4], this 
permitted additional comparison between the performance of the three compensators. 

The construction of a controller using virtual sensors provides a great deal of flexibility. 
In addition to permitting the design of controllers utilizing certain state measurements, it 
provides the capability for developing controllers designed for a variety of environments. The 
observation gains are computed using the full observation matrix in each case. The observer 
submatrices Cp, Cw, Cv can then be incorporated or omitted in the state estimator computa- 
tions depending on the available data. This allows for some latitude in sensor location as well 
as the disabling (in the data collection process) of damaged or superfluous sensors. While 
heuristic in nature, the dual incorporation of the observation submatrices to accommodate 
virtual sensors proves an effective technique for reducing the number of physical sensors while 
maintaining the conditioning of the gain and observer matrices. 

The final control laws considered are the full state iJ°°/MinMax controller (2.17) and the 
Kaiman filter which results with 7 = 00. These two laws provide benchmarks against which 
to compare the iJ°°/MinMax output feedback controllers. 

Sensors Sensor Components 

for Riccati Solution 

Sensor Components 
Mies. Disp. Vel. for Control Computation 

Compensator I 

Compensator II 

Compensator III 

Kaiman Filter 

5 

5 Virtual 

5 Virtual 

5 

5 

5 

5 Virtual 

5 

5 

5 

5 

5 

Np = Nw = Nv = 5 

NP = NW = NV = 5 

NP = NW = NV = 5 

NP = NW = NV = 5 

Np = Nw = Nv = 5 

NP = NW = 0,NV = 5 

NP = NW = NV = 5 

H°° Control Full State 

Table 5. Full state and output feedback control laws with sensor numbers. 
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Trajectories for the uncontrolled system and system controlled via the five control laws 
were computed over the time interval [0, .16] with 0%, 5% and 10% relative noise added to the 
model and observations. The rms pressure values at the cavity points ci,c2,c3 and the rms 
displacement at the plate center px = (0,0) for the 5% noise case are summarized in Table 6. 
Time domain plots of the uncontrolled and controlled pressure at cx = (0,0, .05) are given 
in Figure 5 while the rms sound pressure values along the central axis Lx (see Figure 3) are 

plotted in Figure 6. 
As expected, the full state üT°°/MinMax controller provides the best performance since 

it utilizes the most information. With 5% noise, it provides a 12.5 dB reduction at cx with 
equally significant reductions throughout the length of the cavity. The Kaiman filter yields 
an 8.5 dB reduction at cx with performance less than the full state MinMax control due to the 
limited number of observations and the lack of robustness in the presence of noise. The three 
MinMax compensators yield 7-8 dB reductions at C\ with similar performances throughout 
the cavity. In comparing the rms values and time plots of the three compensators, it is noted 
that the performance of Compensator I with measurements of pressure, displacement and 
velocity is only 1-2 dB better than that of Compensators II and III. Recall from Table 5 that 
Compensator III employs only 5 velocity sensors for the actual state reconstruction. The pre- 
computed gains and coupled model provide the remaining information required for accurate 

state estimation and control computation. 
The global nature of the noise reduction should also be noted. Both time and rms plots 

illustrate that model-based controllers employing the structure-mounted actuator provide sig- 
nificant attenuation throughout the cavity. 

These results demonstrate the possibility of obtaining very effective control attenuation 
using only structural observations with the coupled model used to estimate the structural and 
acoustic states. This is important in many interior field applications such as the structural 
acoustic system described here and crucial in exterior field applications (e.g., transformer or 
submarine) where acoustic measurements may be impossible to attain. 

Sound pressure level (dB) Displacement (m) 

c\ C2 C3 Pi 

open loop 

MinMax full state 

Kaiman filter (I) 

MinMax compensator (I) 

MinMax compensator (II) 

MinMax compensator (III) 

119.7 

107.2 

111.3 

111.3 

112.8 

112.8 

113.7 

103.2 

105.9 

105.« 

106.9 

106.9 

119.7 

104.1 

110.9 

110.9 

112.3 

112.3 

12.4 x 10-5 

8.0 x 10-5 

8.0 x 10"5 

8.0 x 10-5 

8.0 x 10-5 

8.0 x IQ-5 

Table 6. Sound pressure levels and displacements (rms) in the presence of 5% noise. 
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(a) 

(c) (d) 

(e) (f) 

Figure 5. Time history of sound pressure level at c\ = (0,0,0.05) with 5% noise; (a) Open 
loop, (b) Full state MinMax controller, (c) MinMax compensator I, (d) MinMax compen- 
sator II, (e) MinMax compensator III, (f) Kaiman filter. 
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90, 

furt state: 

compl: 

comp II: 

comp III: 

0 0.1        0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9 1 
z-axis (m) 

(a) 

_j 1_ 

0        0.1        0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9 1 
z-axis (m) 

(b) 

Figure 6. Sound pressure level along central z-axis Ly over the time interval [0,0.16]; (a) 0% 
noise, (b) 5% noise. Compensators II and III provide graphically identical attenuation. 

5    Closed Loop Simulations - Long Cylinder 

Two physical mechanisms that contribute significantly to the difficulty in controlling structure- 
borne noise are the structural acoustic coupling and the relatively slow wave speed in the 
acoustic field. The effects and utilization of the coupling have been described in previous 
sections and will be re-addressed in Section 6. The efficacy of using the dynamic wave model 
to incorporate the wave speed is illustrated here through consideration of a cylinder whose 
length is significantly larger than the end-mounted vibrating plate (see Figure 7a). Specifically, 
the plate has the same dimensions as that in previous sections while the length of the cylinder 
is now 3.206 m. This yields a cylindrical length to plate diameter ratio of 7 as compared to 
2.33 in Section 4. The forcing function in (4.1) was again used to model a uniform periodic 

acoustic field driving the plate. 
For these simulations, three patch configurations were considered as depicted in Figure 7b, 

c, d. Specifically, two pairs were circular (n = 0,r2 = Ä/12 and rx = 0,r2 = R/4) and 
one was ringlike (n = #/3.r2 = R/2). The MinMax parameter choice 7 = 10 provided an 
adequate balance between conditioning and stability. 

For the full state feedback law (2.17), rms sound pressure levels along the axes 

Al: {6 = 0, r = 0, 0<z<£) 

A2: (9 = 0, r = R/4, 0 < z < £) 

A3: (6 = 0, r = R/2, 0 < z < t) 

A4: {6 = 0, r = 3Ä/4,. 0 < z < £) 

(see Figure 7a) are plotted in Figure 8. In each case, it is noted that the small circular patch 
pair (ri = 0,r2 = R/12) provides the least attenuation whereas the patch ring provides up to 
30 dB attenuation.  It is also noted that negligible attenuation is attained along the middle 
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Al 
A2- 

A3- 
A4 

(a) 

(b) (c) (d) 

Figure 7. (a) The acoustic cavity with observation axes l,---,4; (b) patch with radius 
r = R/12; (c) patch with radius r = R/A; (d) patch ring with rj = R/4,r2 = R/2. 

1/3 of the central axis. This illustrates a controllability issue which arises when utilizing a 
single patch pair in a system whose length is significantly longer than the driving plate. Hence 
while significant attenuation is achieved throughout most of the cavity, optimization issues 
concerning patch number and orientation should be investigated to attain global attenuation. 

Similar results obtained with Compensators I and III described in Table 5 are plotted in 
Figure 9. The small patch having radius R/12 was employed as an actuator and rms sound 
pressure levels along axis 2 are reported in the figure. For both cases (0% and 5% noise), 
10-12 dB reductions were obtained along this axis, even with Compensator III which employs 
only 5 velocity observations for state reconstruction. The tendencies along axes 3 and 4 are 
similar while the rms pressure along axis 1 still exhibits the central region with negligible 
control. 

For both the full state feedback controller and the compensator, the information regarding 
propagation of the acoustic response is provided by the dynamic wave equation (2.1). Due 
to the low wave speed (343 m/sec), the time delay between the input of voltage to the patch 
and the acoustic response at a sensor is significant. If left unmodeled or uncompensated, 
this delay will destabilize a controller. This is one motivation for utilizing wave-based rather 
than modal-based controllers in many acoustic applications.. As illustrated by the results 
in Figures 8 and 9, as well as the previous section, the use of a dynamic wave model very 
adequately accounts for the delay thus leading to strong attenuation for this system. 
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Figure 8. Root mean square (rms) sound pressure levels for 0% noise with full state feedback; 
 (Open loop), (Small circular patch), (Large circular patch), (Patch 
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6    Closed Loop Simulations-Plate-based controller 

The fact that structure-borne noise is generated by a vibrating structure makes it tempting to 
reduce the noise solely by controlling the structure. The example we consider in this section 
reinforces the tenet held by many acousticians that this strategy is not effective in general 
and should be used only for certain exogenous frequencies (see, for example, [13, 20]). It also 
illustrates the benefits of utilizing a compensator for the coupled system which employs only 
structural sensors (see Compensator III of Table 5) rather than a purely structural controller. 

For the structural acoustic system in this work, a purely structural controller would be 
designed for the discretized plate model 

KP     0 
0    MP 

0       Kp 
-KP   -CP 

+ 
" 0 ' 

B 
u(t) + 0 

+ Dr,(t) 

where again, fl(t) contains the generalized Fourier coefficients for displacement and Mp,Kp 
and Cp are the mass, stiffness and damping matrices for the plate (see Section 2). The control, 
exogenous force and uncertainties are contained in Bu(t),g(t) and Drj(t), respectively. The 
observation matrix for this case is 

y(t) = 
cw   o 
0   cv 

with 5 displacement and velocity observations (Nw = Nv = 5). 
Control results for the forcing functions fi(t) = sin(1307n5) ,/2(£) = sin(3307ri) using the 

plate-based compensator with Nw = Nv = 5 are reported in Tables 7 and 8. The first 
frequency couples effectively with the 59.5 Hz plate-like mode while f2(t) strongly drives the 
163.4 Hz cavity-like mode. For comparison, the attenuation levels obtained with the plate- 
based #°°/MinMax full state control law are also summarized in the tables. 

As noted by the rms sound pressure levels in Table 7, the plate-based compensator is 
fairly effective in attenuating noise generated primarily by a plate-like mode. The results 
in Table 8 illustrate that this strategy is ineffective (at some points, sound pressure levels 
are actually increased) for exogenous frequencies driving cavity-like modes (this reinforces 
observations made in [13, 20]). While rms displacement levels are reduced by a factor of nearly 
four, sound pressure levels remain high due to the effective structural acoustic coupling. To 
attain an effective compensator for general frequencies, the coupling mechanisms and acoustic 
components must be incorporated in the model and control law. 

Pressure level (dB) Displacement (m) 

C\ c2 c3 Pi 

open loop 

H°° full state 

H°° compensator 

116.4 

107.7 

109.5 

105.4 

101.4 

103.4 

112.4 

105.2 

109.2 

5.254 x 10~4 

0.464 x lO"4 

0.950 x lO"4 

Table 7. Sound pressure and displacement levels (rms) for the 65 Hz exogenous force fi(t). 
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Pressure level (dB) Displacement (m) 

C\ C2 c3 Pi 

open loop 

H°° full state 

H00 compensator 

122.5 

124.9 

125.5 

117.4 

119.8 

120.4 

122.9 

125.3 

125.9 

0.413 x 10"4 

0.133 x 10~4 

0.342 x 10~4 

Table 8. Sound pressure and displacement levels (rms) for the 165 Hz exogenous force }2{t). 

7    Conclusion 

The utilization of coupling effects in control design for structural acoustic systems was consid- 
ered in this work. One objective in many such systems is the attenuation of structure-borne 
noise through the use of surface-mounted actuators such as piezoceramic patches. Models 
for such systems thus have a structural/actuator component, acoustic field components and 
coupling mechanisms which model the acoustic/structure interactions. It is through these 
coupling mechanisms that feedback control of noise through the structural actuators can be 

accomplished. 
The prototypical experimental setup considered here consisted of a cylindrical acoustic 

cavity with a driven circular plate mounted at one end. Piezoceramic patch pairs driven out- 
of-phase to produce pure bending moments were used as actuators. A PDE system was used 
to model the structural, acoustic and coupling components for this setup. Galerkin approx- 
imations were used to obtain an ODE system suitable for simulation, parameter estimation 

and control applications. 
For this modeled system with full coupling (backpressure and velocity) between the struc- 

ture and adjacent acoustic field, numerical simulations demonstrated a 1-5 Hz shift in system 
frequencies from those observed for the isolated components. The backpressure from the field 
on the plate produced plate-like system frequencies lower than those of the isolated plate; 
hence through the coupling, the field acts as added mass to the plate. The coupling of the 
plate to the acoustic field produces an opposite stiffening effect in that system frequencies of 
acoustic-like modes are higher than isolated acoustic frequencies. For the geometry in these 
examples, the frequency shifts were fairly small and one might obtain reasonable modal infor- 
mation about the system through consideration of the uncoupled structure and acoustic field. 
In general, however, if coupling mechanisms are not included in the model, the frequency 

inaccuracies can nullify and possibly destabilize the controller. 
The utilization of the coupling mechanisms can, on the other hand, lead to very effective 

controllers. To illustrate this, two sets of #°7MinMax control laws were considered. Full 
state information was assumed for the first while the states were estimated from sensor mea- 
surements and then employed in an output feedback law in the second. In the latter (the 
MinMax compensator), a variety of sensor arrangements were compared to determine the 

extent to which the coupling could be utilized. 
For various exogenous inputs, numerical simulations demonstrated high attenuation with 

both the full state feedback law and the output feedback law with states reconstructed us- 
ing pressure, velocity and displacement measurements. More importantly, the results demon- 
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strated only a 1-2 dB loss of control when state measurements used for feedback were obtained 
only from structural velocity sensors. This latter case is important since it demonstrates that 
through the coupled structural acoustic model, accurate acoustic state information can be ob- 
tained solely from velocity measurements. This has important ramifications in a large number 
of structural acoustic systems since it demonstrates the possibility of eliminating pressure sen- 
sors (microphones) in the field (microphones in a fuselage can be unwieldy while microphones 
outside a submarine are unreasonable). 

Finally, numerical results demonstrating the necessity of retaining the coupling and acous- 
tic components when designing a general control law for noise attenuation were presented. 
These results demonstrate that while a control law based solely on the structural component 
can be effective for exogenous frequencies near plate-like frequencies, it is totally ineffective 
for applications in which cavity-like modes are excited. This reinforces the necessity of careful 
modeling of the structural, acoustic and coupling components and the design of a compensator 
which utilizes all three components. 
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